Example 2.1: Determine the design flexural strength of the beam cross-section shown below. Use concrete class C20/25 and steel grade S-400

![Cross-sectional diagram]

Step 1: Design Values (Changing the characteristic value to design value)

\[
d = 400 - 25 - 8 - 5 = 362\text{mm}
\]

\[
f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c}
\]

\[
f_{yd} = \frac{f_{yk}}{\gamma_S}
\]

for persistent and transient design situation:

- \(\gamma_c = 1.5\)
- \(\gamma_S = 1.15\)
- \(\alpha_{cc} = 1\)

NB: Take \(\alpha_{cc} = 0.85\)

\[
f_{cd} = \frac{0.85 \times 20}{1.5} = 11.33\text{ MPa}
\]

\[
f_{yd} = \frac{400}{1.15} = 347.83\text{ MPa}
\]

Step 2: Assume the type of failure

Assume tension failure with rupture of steel and \(\varepsilon_{cm} \leq \varepsilon_{c2} = 2^\circ/00\)
Cross-Sectional analysis of reinforced concrete beam section for flexure
Prepared by: Concrete materials and structures chair

Step 3: Draw the strain profile corresponding to the type of failure and use the similarity of triangles to develop a relationship between the unknown strain and the neutral axis.

![Diagram of strain profile]

From Similarity of Triangle

$$\frac{\epsilon_{cm} + 25}{d} = \frac{\epsilon_{cm}}{x} \rightarrow \frac{x}{d} = k_x = \frac{\epsilon_{cm}}{\epsilon_{cm} + 25}$$

(1)

Step 4: Use the equation of alpha corresponding to the assumption in step 2 and the relationship developed in step 3 to calculate the unknown strain.

From equilibrium of forces,

$$C_c = T_s \quad \text{But: } C_c = \alpha_c f_{cd}bd \quad \text{and } T_s = A_s f_{yd}$$

$$C_c = \alpha_c f_{cd}bd = A_s f_{yd}$$

$$\alpha_c = \frac{A_s f_{yd}}{f_{cd}bd}$$

$$\alpha_c = \frac{(2 \times \pi \times 5^2) \times 347.83}{11.33 \times 300 \times 362} = 0.0444$$

(2)

For $$\epsilon_{cm} < \epsilon_{c2}$$, $$\alpha_c = \epsilon_{cm} \left[\frac{6 - \epsilon_{cm}}{12}\right] k_x$$

Substituting $$k_x$$ from Eqn (1),

Examples on analysis of singly reinforced sections
Cross-Sectional analysis of reinforced concrete beam section for flexure

Prepared by: Concrete materials and structures chair

\[
\alpha_c = \varepsilon_{cm} \left[\frac{6 - \varepsilon_{cm}}{12} \right] \left(\frac{\varepsilon_{cm}}{\varepsilon_{cm} + 25} \right)
\]

\[
\alpha_c = \left(\frac{6\varepsilon_{cm}^2 - \varepsilon_{cm}^3}{12\varepsilon_{cm} + 300} \right)
\]

\[12\alpha_c\varepsilon_{cm} + 300\alpha_c = 6\varepsilon_{cm}^2 - \varepsilon_{cm}^3\]

\[-\varepsilon_{cm}^3 + 6\varepsilon_{cm}^2 - 12\alpha_c\varepsilon_{cm} - 300\alpha_c = 0\]

Solving the cubic equation results three possible answers

\[\varepsilon_{cm1} = 5.4546 > 3.5 \quad \text{not ok!}\]

\[\varepsilon_{cm2} = -1.3136 < 0 \quad \text{not ok!}\]

\[\varepsilon_{cm3} = 1.859 < 3.5 \quad \text{ok!}\]

Thus, \(\varepsilon_{cm} = 1.859\%\)

Step 5: Check if the assumption in step 2 is correct and if it is, proceed to step 8. If the assumption is not correct, repeat step 2 to 5 with another assumption.

\(\varepsilon_{cm} = 1.859 < 2 \quad \text{both of the assumptions are correct!}\)

Step 6: Calculate the value of beta

For \(\varepsilon_{cm} < \varepsilon_{c2}\), \(\beta_c = k_x \left[\frac{8 - \varepsilon_{cm}}{4(6 - \varepsilon_{cm})} \right]\)

\[k_x = \frac{\varepsilon_{cm}}{\varepsilon_{cm} + 25} = \frac{1.859}{1.859 + 25} = 0.0692 \quad \text{and} \quad x = 25.0504 \text{ mm}\]

Substituting the values of \(k_x\) and \(\varepsilon_{cm}\) yields, \(\beta_c = 0.0257\)

Step 7: Calculate the moment resistance

\[M = A_s f_{yd} (1 - \beta_c)\]

\[M = (2 \times 5^2) \times 347.83 \times 362 \times (1 - 0.0257) = 19.27 \text{ kNm}\]
Example 2.2: Repeat Example 2.1 replacing 2 Ø 10 by 2 Ø 12

Step 1: Design Values (Changing the characteristic value to design value)

\[d = 400 - 25 - 8 - 6 = 361 \text{mm} \]

\[f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c} \]

\[f_{yd} = \frac{f_{yk}}{\gamma_s} \]

For persistent and transient design situation:

- \(\gamma_c = 1.5 \)
- \(\gamma_s = 1.15 \)

\(\alpha_{cc} = 1 \)

NB: Take \(\alpha_{cc} = 0.85 \)

\[f_{cd} = \frac{0.85 \times 20}{1.5} = 11.33 \text{ MPa} \]

\[f_{yd} = \frac{400}{1.15} = 347.83 \text{ MPa} \]

Step 2: Assume the type of failure

Assume tension failure with rupture of steel and \(\varepsilon_{cm} \leq \varepsilon_{c2} = 2\% \)}
Cross-Sectional analysis of reinforced concrete beam section for flexure
Prepared by: Concrete materials and structures chair

Step 3: Draw the strain profile corresponding to the type of failure and use the similarity of triangles to develop a relationship between the unknown strain and the neutral axis.

![Strain profile diagram]

From Similarity of Triangle

\[\frac{\varepsilon_{cm} + 25}{d} = \frac{\varepsilon_{cm}}{x} \rightarrow \frac{x}{d} = k_x = \frac{\varepsilon_{cm}}{\varepsilon_{cm} + 25} \]

(1)

Step 4: Use the equation of alpha corresponding to the assumption is step 2 and the relationship developed in step 3 to calculate the unknown strain.

From equilibrium of forces,

\[C_c = T_s \quad \text{But: } C_c = \alpha_c f_{cd}bd \quad \text{and} \quad T_s = A_s f_{yd} \]

\[C_c = \alpha_c f_{cd}bd = A_s f_{yd} \]

\[\alpha_c = \frac{A_s f_{yd}}{f_{cd}bd} \]

\[\alpha_c = \frac{2 \times \pi \times 6^2 \times 347.83}{11.33 \times 300 \times 361} = 0.064 \]

(2)

For \(\varepsilon_{cm} < \varepsilon_{c2} \), \(\alpha_c = \varepsilon_{cm} \left(\frac{6 - \varepsilon_{cm}}{12} \right) k_x \)

Substituting \(k_x \) from Eqn (1),

\[\alpha_c = \varepsilon_{cm} \left(\frac{6 - \varepsilon_{cm}}{12} \right) \left(\frac{\varepsilon_{cm}}{\varepsilon_{cm} + 25} \right) \]

EN 1992
Figure 6.1

NB: The limiting value for \(\varepsilon_s = 25^\circ/oo \) is taken from British National Annex

Examples on analysis of singly reinforced sections
Cross-Sectional analysis of reinforced concrete beam section for flexure

Prepared by: Concrete materials and structures chair

\[\alpha_c = \left(\frac{6\varepsilon_{cm}^2 - \varepsilon_{cm}^3}{12\varepsilon_{cm} + 300} \right) \]

\[12\alpha_c\varepsilon_{cm} + 300\alpha_c = 6\varepsilon_{cm}^2 - \varepsilon_{cm}^3 \]

\[-\varepsilon_{cm}^3 + 6\varepsilon_{cm}^2 - 12\alpha_c\varepsilon_{cm} - 300\alpha_c = 0 \]

\[-\varepsilon_{cm}^3 + 6\varepsilon_{cm}^2 - 0.768\varepsilon_{cm} - 19.2 = 0 \]

Solving the cubic equation results three possible answers

\[\varepsilon_{cm1} = 5.116 > 3.5 \quad \text{not ok!} \]

\[\varepsilon_{cm2} = -1.545 < 0 \quad \text{not ok!} \]

\[\varepsilon_{cm3} = 2.429 < 3.5 \quad \text{ok!} \]

Thus, \(\varepsilon_{cm} = 2.429 \)%

Step 5: Check if the assumption in step 2 is correct and if it is, proceed to step 8. If the assumption is not correct, repeat step 2 to 5 with another assumption.

\[\varepsilon_{cm} = 2.429 < 3.5 \quad \text{the assumption is correct!} \]

\[\varepsilon_{cm} = 2.429 > 2 \quad \text{the assumption is not correct!} \]

Trial 2

Assume tension failure with rupture of steel and \(\varepsilon_{cm} > \varepsilon_{c2} = 2^\circ / 00 \)

For \(\varepsilon_{cm} > \varepsilon_{c2} \), \(\alpha_c = k_x \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right) \)

Substituting \(k_x \) from Eqn (1),

\[\alpha_c = \left(\frac{\varepsilon_{cm}}{\varepsilon_{cm} + 25} \right) \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right) \]

\[3\alpha_c\varepsilon_{cm} + 75\alpha_c = 3\varepsilon_{cm} - 2 \]

\[\varepsilon_{cm} = \frac{-2 - 75\alpha_c}{3\alpha - 3} = \frac{-2 - 75 \times 0.064}{3 \times 0.064 - 3} = 2.42 \]

\[\varepsilon_{cm} = 2.429 > 2 \quad \text{the assumption is correct!} \]

\[\varepsilon_{cm} = 2.429 < 3.5 \quad \text{the assumption is correct!} \]
Cross-Sectional analysis of reinforced concrete beam section for flexure
Prepared by: Concrete materials and structures chair

Step 6: Calculate the value of beta

For $\varepsilon_{cm} > \varepsilon_{c2}$, $\beta_c = k_x \left[\frac{(3\varepsilon_{cm} - 4) + 2}{2\varepsilon_{cm} (3\varepsilon_{cm} - 2)} \right]$

$$k_x = \frac{\varepsilon_{cm}}{\varepsilon_{cm} + 25} = \frac{2.42}{2.42 + 25} = 0.088 \text{ and } x = 31.826\ mm$$

Substituting the values of k_x and ε_{cm} yields, $\beta_c = 0.0343$

Step 7: Calculate the moment resistance

$$M = A_s f_y d (1 - \beta_c)$$

$$M = (2 \times 6^2) \times 347.83 \times 361 \times (1 - 0.0343) = 27.43\ kNm$$
Cross-Sectional analysis of reinforced concrete beam section for flexure
Prepared by: Concrete materials and structures chair

<table>
<thead>
<tr>
<th>Example 2.3: Repeat Example 2.1 replacing $2 , \varnothing 10$ by $4 , \varnothing 14$</th>
</tr>
</thead>
</table>

Step 1: Design Values (Changing the characteristic value to design value)

\[
d = 400 - 25 - 8 - 7 = 360 \, mm
\]

\[
f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_C}
\]

\[
f_{yd} = \frac{f_{yk}}{\gamma_S}
\]

for persistent and transient design situation:

- $\gamma_C = 1.5$
- $\gamma_S = 1.15$

$\alpha_{cc} = 1$

NB: Take $\alpha_{cc} = 0.85$

\[
f_{cd} = \frac{0.85 \times 20}{1.5} = 11.33 \, MPa
\]

\[
f_{yd} = \frac{400}{1.15} = 347.83 \, MPa
\]

Step 2: Assume the type of failure

Assume tension failure with rupture of steel and $\varepsilon_{cm} > \varepsilon_{c2} = \frac{2}{0} \, /\, 0$

Examples on analysis of singly reinforced sections
Cross-Sectional analysis of reinforced concrete beam section for flexure
Prepared by: Concrete materials and structures chair

Step 3: Draw the strain profile corresponding to the type of failure and use the similarity of triangles to develop a relationship between the unknown strain and the neutral axis.

![Strain profile diagram]

From Similarity of Triangle

\[
\frac{\varepsilon_{cm} + 25}{d} = \frac{\varepsilon_{cm}}{x} \quad \Rightarrow \quad \frac{x}{d} = k_x = \frac{\varepsilon_{cm}}{\varepsilon_{cm} + 25}
\]

Step 4: Use the equation of alpha corresponding to the assumption is step 2 and the relationship developed in step 3 to calculate the unknown strain.

From equilibrium of forces,

\[C_c = T_s \quad \text{But: } C_c = \alpha_c f_{cd} b d \quad \text{and} \quad T_s = A_s f_{yd} \]

\[C_c = \alpha_c f_{cd} b d = A_s f_{yd} \]

\[\alpha_c = \frac{A_s f_{yd}}{f_{cd} b d} \]

\[\alpha_c = \left(\frac{4 \times \pi \times 7^2}{11.33 \times 300 \times 360} \right) = 0.175 \]

For \(\varepsilon_{cm} > \varepsilon_{o2} \), \(\alpha_c = k_x \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right) \)

Substituting \(k_x \) from Eqn (1),

\[\alpha_c = \left(\frac{\varepsilon_{cm}}{\varepsilon_{cm} + 25} \right) \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right) \]

EN 1992

Figure 6.1

NB: The limiting value for \(\varepsilon_s = 25^\circ/\text{o} \) is taken from British National Annex
Cross-Sectional analysis of reinforced concrete beam section for flexure
Prepared by: Concrete materials and structures chair

\[\alpha_c = \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm} + 75} \right) \]

\[3\alpha_c \varepsilon_{cm} + 75\alpha_c = 3\varepsilon_{cm} - 2 \]

\[\varepsilon_{cm} = \frac{-2 - 75\alpha_c}{3\alpha - 3} = \frac{-2 - 75 \times 0.175}{3 \times 0.175 - 3} = 6.11 \]

Step 5: Check if the assumption in step 2 is correct and if it is, proceed to step 8. If the assumption is not correct, repeat step 2 to 5 with another assumption.

\[\varepsilon_{cm} = 6.11 > 3.5 \quad \text{the assumption is not correct!} \]

Trial 2

Assume tension failure with crushing of concrete

![Diagram of cross-sectional analysis](image)

From Similarity of Triangle

\[\frac{3.5 + \varepsilon_s}{d} = \frac{3.5}{x} \quad \Rightarrow \quad \frac{x}{d} = k_x = \frac{3.5}{3.5 + \varepsilon_s} \]

(1)

For \(\varepsilon_{cm} > \varepsilon_{c2} \), \(\alpha_c = k_x \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right) \)

Substituting \(k_x \) from Eqn (1),

\[\alpha_c = \left(\frac{3.5}{3.5 + \varepsilon_s} \right) \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right) \]

\[\alpha_c = \left(\frac{3.5}{3.5 + \varepsilon_s} \right) \left(\frac{3 \times 3.5 - 2}{3 \times 3.5} \right) \]
Cross-Sectional analysis of reinforced concrete beam section for flexure

Prepared by: Concrete materials and structures chair

\[
\alpha_c = \left(\frac{8.5}{10.5 + 3\varepsilon_s}\right)
\]

\[
10.5\alpha_c + 3\varepsilon_s\alpha_c = 8.5
\]

\[
\varepsilon_s = \frac{8.5 - 10.5\alpha_c}{3\alpha_c} = \frac{8.5 - 10.5 \times 0.175}{3 \times 0.175} = 12.69
\]

\[
\varepsilon_{yd} = \frac{f_{yd}}{E_s} = \frac{347.83}{200 \times 10^3} = 1.74
\]

\[
\varepsilon_s = 12.69 > 1.74 \quad \text{the assumption is correct!}
\]

\[
\varepsilon_s = 12.69 < 25 \quad \text{the assumption is correct!}
\]

Step 6: Calculate the value of beta

For \(\varepsilon_{cm} > \varepsilon_{c2}\), \(\beta_c = k_x \left[\frac{\varepsilon_{cm}(3\varepsilon_{cm} - 4) + 2}{2\varepsilon_{cm}(3\varepsilon_{cm} - 2)}\right]\)

\[
k_x = \frac{3.5}{3.5 + \varepsilon_s} = \frac{3.5}{3.5 + 12.69} = 0.216 \quad \text{and} \quad x = 77.76 mm
\]

Substituting the values of \(k_x\) and \(\varepsilon_{cm}\) yields, \(\beta_c = 0.09014\)

Step 7: Calculate the moment resistance

\[
M = A_s f_{yd} d (1 - \beta_c)
\]

\[
M = (4 \times 7^2) \times 347.83 \times 360 \times (1 - 0.09014) = 70.15 kNm
\]
Example 2.4: Repeat Example 2.1 replacing 2 Ø 10 by 5 Ø 24

![Concrete beam section diagram]

Step 1: Design Values (Changing the characteristic value to design value)

\[d = 400 - 25 - 8 - 12 = 355 \text{ mm} \]

\[f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c} \]

\[f_{yd} = \frac{f_{yk}}{\gamma_s} \]

for persistent and transient design situation:

✓ \(\gamma_c = 1.5 \)

✓ \(\gamma_s = 1.15 \)

\(\alpha_{cc} = 1 \)

NB: Take \(\alpha_{cc} = 0.85 \)

\[f_{cd} = \frac{0.85 \times 20}{1.5} = 11.33 \text{ MPa} \]

\[f_{yd} = \frac{400}{1.15} = 347.83 \text{ MPa} \]

Step 2: Assume the type of failure

Assume tension failure with crushing of concrete

Cross-Sectional analysis of reinforced concrete beam section for flexure

Prepared by: Concrete materials and structures chair

Reinforced Concrete I

Examples on analysis of singly reinforced sections
Step 3: Draw the strain profile corresponding to the type of failure and use the similarity of triangles to develop a relationship between the unknown strain and the neutral axis.

![Strain Profile Diagram](image)

\[\frac{3.5 + \varepsilon_s}{d} = \frac{3.5}{x} \Rightarrow \frac{x}{d} = k_x = \frac{3.5}{3.5 + \varepsilon_s} \]

From Similarity of Triangle

\[\frac{3.5 + \varepsilon_s}{d} = \frac{3.5}{x} \Rightarrow \frac{x}{d} = k_x = \frac{3.5}{3.5 + \varepsilon_s} \]

\[(1) \]

Step 4: Use the equation of alpha corresponding to the assumption in step 2 and the relationship developed in step 3 to calculate the unknown strain

From equilibrium of forces,

\[C_c = T_s \quad \text{But:} \quad C_c = \alpha_c f_{cd} bd \quad \text{and} \quad T_s = A_s f_{yd} \]

\[C_c = \alpha_c f_{cd} bd = A_s f_{yd} \]

\[\alpha_c = \frac{A_s f_{yd}}{f_{cd} bd} \]

\[\alpha_c = \frac{(5 \times \pi \times 12^2) \times 347.83}{11.33 \times 300 \times 355} = 0.652 \]

\[(2) \]

For \(\varepsilon_{cm} > \varepsilon_{y2} \), \(\alpha_c = k_x \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right) \)

Substituting \(k_x \) from Eqn (1),

\[\alpha_c = \left(\frac{3.5}{3.5 + \varepsilon_s} \right) \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right) \]
Cross-Sectional analysis of reinforced concrete beam section for flexure

Prepared by: Concrete materials and structures chair

\[
\alpha_c = \left(\frac{3.5}{3.5 + \varepsilon_s} \right) \left(\frac{3 \times 3.5 - 2}{3 \times 3.5} \right)
\]

\[
\alpha_c = \left(\frac{8.5}{10.5 + 3\varepsilon_s} \right)
\]

10.5\alpha_c + 3\varepsilon_s\alpha_c = 8.5

\[
\varepsilon_s = \frac{8.5 - 10.5\alpha_c}{3\alpha_c} = \frac{8.5 - 10.5 \times 0.652}{3 \times 0.652} = 0.846
\]

Step 5: Check if the assumption in step 2 is correct and if it is, proceed to step 8. If the assumption is not correct, repeat step 2 to 5 with another assumption.

\[
\varepsilon_{yd} = \frac{f_{yd}}{E_s} = \frac{347.83}{200 \times 10^3} = 1.74
\]

\[
\varepsilon_s = 0.846 < \varepsilon_{yd} \quad \text{the assumption is not correct!}
\]

Trial 2

Assume compression failure with crushing of concrete

\[
\varepsilon_s < \varepsilon_{yd}
\]

From Similarity of Triangle

\[
\frac{3.5 + \varepsilon_s}{d} = \frac{3.5}{x} \Rightarrow \frac{x}{d} = k_x = \frac{3.5}{3.5 + \varepsilon_s}
\]

For \(\varepsilon_{cm} > \varepsilon_{c2}\), \(\alpha_c = k_x \left(\frac{3\varepsilon_{cm} - 2}{3\varepsilon_{cm}} \right)\)
Cross-Sectional analysis of reinforced concrete beam section for flexure

Prepared by: Concrete materials and structures chair

\[\alpha_c = \frac{A_s E_s \varepsilon_s}{f_{cd} b d} \]

\[\alpha_c = \left(\frac{5 \times \pi \times 12^2}{11.33 \times 300 \times 355} \right) = 0.375 \varepsilon_s \]

(2)

For \(\varepsilon_{cm} > \varepsilon_{c2} \), \(\alpha_c = k_x \left(\frac{3 \varepsilon_{cm} - 2}{3 \varepsilon_{cm}} \right) \)

Substituting \(k_x \) from Eqn (1),

\[\alpha_c = \left(\frac{3.5}{3.5 + \varepsilon_s} \right) \left(\frac{3 \varepsilon_{cm} - 2}{3 \varepsilon_{cm}} \right) \]

\[\alpha_c = \left(\frac{3.5}{3.5 + \varepsilon_s} \right) \left(\frac{3 \times 3.5 - 2}{3 \times 3.5} \right) \]

\[\alpha_c = \left(\frac{8.5}{10.5 + 3 \varepsilon_s} \right) = 0.375 \varepsilon_s \]

\(10.5 \times 0.375 \varepsilon_s + 3 \times 0.375 \varepsilon_s^2 = 8.5 \)

\(1.125 \varepsilon_s^2 + 3.9375 \varepsilon_s - 8.5 = 0 \)

Solving the quadratic equation results two possible answers

\(\varepsilon_{s1} = 1.508 > 0 \) \(\ldots \ldots \ldots \ldots \ldots \) ok!

\(\varepsilon_{s2} = -5.008 < 0 \) \(\ldots \ldots \ldots \ldots \ldots \) not ok!

Thus,

\(\varepsilon_s = 1.508 < 1.74 \) \(\text{the assumption is correct!} \)
Step 6: Calculate the value of beta

For $\varepsilon_{cm} > \varepsilon_{c2}$,

$$\beta_c = k_x \left[\frac{\varepsilon_{cm} (3\varepsilon_{cm} - 4) + 2}{2\varepsilon_{cm} (3\varepsilon_{cm} - 2)} \right]$$

$$k_x = \frac{3.5}{3.5 + \varepsilon_s} = \frac{3.5}{3.5 + 1.508} = 0.699 \text{ and } x = 248.1 \text{ mm}$$

Substituting the values of k_x and ε_{cm} yields $\beta_c = 0.2912$

Step 7: Calculate the moment resistance

$$M = A_s f_{yd} (1 - \beta_c)$$

$$M = (5 \times 12^2) \times 347.83 \times 355 \times (1 - 0.2912) = 171.31 kNm$$
Example 2.5: Find the reinforcement amount which results balanced failure & calculate the moment capacity for the cross section described in Example 2.1. (Assume the effective depth to be 354 mm)

Step 1: Design Values (Changing the characteristic value to design value)

\[f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c} \]
\[f_{yd} = \frac{f_{yk}}{\gamma_S} \]

for persistent and transient design situation:
- \(\gamma_c = 1.5\)
- \(\gamma_S = 1.15\)
\(\alpha_{cc} = 1\)

NB: Take \(\alpha_{cc} = 0.85\)

\[f_{cd} = \frac{0.85 \times 20}{1.5} = 11.33 \text{ MPa} \]
\[f_{yd} = \frac{400}{1.15} = 347.83 \text{ MPa} \]

Step 2: Strain profile for balanced failure

\[\varepsilon_s = \varepsilon_{yd} \]

From similarity of triangles
\[\frac{3.5}{x_b} = \frac{\varepsilon_{yd}}{d - x_b} \quad \text{but} \quad \varepsilon_{yd} = 1.74 \]
Cross-Sectional analysis of reinforced concrete beam section for flexure

Prepared by: Concrete materials and structures chair

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3.5}{x_b} = \frac{1.74}{d - x_b})</td>
<td>(x_b) and (d) are coordinates of the section.</td>
</tr>
<tr>
<td>(k_x = \frac{3.5}{3.5 + 1.74} = 0.668)</td>
<td>Moment of inertia about the neutral axis.</td>
</tr>
<tr>
<td>(x = 236.45 \text{ mm})</td>
<td>Neutral axis location.</td>
</tr>
<tr>
<td>(\alpha_c = 0.668 \left(\frac{3 \times 3.5 - 2}{3 \times 3.5} \right) = 0.5408)</td>
<td>Ultimate strain ratio.</td>
</tr>
</tbody>
</table>

Step 3: Evaluating \(A_s \)

\[
T_s = A_s f_{yd}
\]

\[
C_c = \alpha_c f_{cd} b d
\]

\[
C_c = T_s
\]

\[
\alpha_c f_{cd} b d = A_s f_{yd}
\]

\[
A_s = \frac{\alpha_c f_{cd} b d}{f_{yd}}
\]

\[
A_s = \frac{0.508 \times 11.33 \times 300 \times 354}{347.83}
\]

\[
A_s = 1870.79 \text{ mm}^2
\]

Step 4: Calculate the value of beta

\[
\beta_c = k_x \left[\frac{\varepsilon_{cm} (3 \varepsilon_{cm} - 4) + 2}{2 \varepsilon_{cm} (3 \varepsilon_{cm} - 2)} \right]
\]

Substituting the values of \(k_x \) and \(\varepsilon_{cm} \) yields \(\beta_c = 0.278 \)

Step 5: Calculate the moment resistance

\[
M = A_s f_{yd} d \left(1 - \beta_c \right)
\]

\[
M = 1870.79 \times 347.83 \times 354 \times (1 - 0.278) = 166.35 \text{ kNm}
\]
Example 2.6: for the cross section described in Example 2.1, Find the reinforcement amount & calculate the moment capacity if $k_x = 0.448$. (Assume the effective depth to be 354 mm)

Step 1: Design Values (Changing the characteristic value to design value)

\[f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c} \]

\[f_{yd} = \frac{f_{y_k}}{\gamma_s} \]

For persistent and transient design situation:

- $\gamma_c = 1.5$
- $\gamma_s = 1.15$
- $\alpha_{cc} = 1$

NB: Take $\alpha_{cc} = 0.85$

\[f_{cd} = \frac{0.85 \times 20}{1.5} = 11.33 \text{ MPa} \]

\[f_{yd} = \frac{400}{1.15} = 347.83 \text{ MPa} \]

Step 2: Strain profile

From similarity of triangles

\[\frac{3.5}{x} = \frac{\varepsilon_s}{d - x} \quad \text{but} \quad \varepsilon_{yd} = 1.74 \]
Cross-Sectional analysis of reinforced concrete beam section for flexure
Prepared by: Concrete materials and structures chair

\[\varepsilon_s = \frac{3.5(d - x)}{x} = 3.5 \left(\frac{1}{k_x} - 1 \right) = 3.5 \left(\frac{1}{0.448} - 1 \right) = 4.3125 \]

For \(\varepsilon_{cm} > \varepsilon_{c2} \), \(\alpha_c = k_x \left(\frac{3 \varepsilon_{cm} - 2}{3 \varepsilon_{cm}} \right) \)

\[\alpha_c = 0.448 \left(\frac{3 \cdot 3.5 - 2}{3 \cdot 3.5} \right) = 0.363 \]

Step 3: Evaluating \(A_s \)

\[T_s = A_s f_{yd} \]
\[C_c = \alpha_c f_{cd} b_d \]
\[C_c = T_s \]
\[\alpha_c f_{cd} b_d = A_s f_{yd} \]
\[A_s = \frac{\alpha_c f_{cd} b_d}{f_{yd}} \]

\[A_s = \frac{0.363 \cdot 11.33 \cdot 300 \cdot 354}{347.83} \]
\[A_s = 1255.72 \text{ mm}^2 \]

Step 4: Calculate the value of beta

For \(\varepsilon_{cm} > \varepsilon_{c2} \), \(\beta_c = k_x \left(\frac{\varepsilon_{cm} (3 \varepsilon_{cm} - 4) + 2}{2 \varepsilon_{cm} (3 \varepsilon_{cm} - 2)} \right) \)

Substituting the values of \(k_x \) and \(\varepsilon_{cm} \) yields, \(\beta_c = 0.1864 \)

Step 5: Calculate the moment resistance

\[M = A_s f_{yd} d (1 - \beta_c) \]

\[M = 1255.72 \times 347.83 \times 354 \times (1 - 0.1864) = 125.8 \text{ kNm} \]
Summary

<table>
<thead>
<tr>
<th>Example</th>
<th>A_s (mm²)</th>
<th>x (mm)</th>
<th>ε_{cm} %</th>
<th>ε_{s} %</th>
<th>M_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>157</td>
<td>25.05</td>
<td>1.86</td>
<td>25</td>
<td>19.27</td>
</tr>
<tr>
<td>2.2</td>
<td>226.08</td>
<td>31.83</td>
<td>2.42</td>
<td>25</td>
<td>27.43</td>
</tr>
<tr>
<td>2.3</td>
<td>615.44</td>
<td>77.76</td>
<td>3.5</td>
<td>12.65</td>
<td>70.15</td>
</tr>
<tr>
<td>2.4</td>
<td>2260.8</td>
<td>248.1</td>
<td>3.5</td>
<td>1.51</td>
<td>171.31</td>
</tr>
<tr>
<td>2.5</td>
<td>1870.79</td>
<td>236.45</td>
<td>3.5</td>
<td>1.74</td>
<td>166.35</td>
</tr>
<tr>
<td>2.6</td>
<td>1255.72</td>
<td>158.59</td>
<td>3.5</td>
<td>4.31</td>
<td>125.8</td>
</tr>
</tbody>
</table>

![Graph showing moment resistance vs. area with ductile and brittle regions marked](image)

Examples on analysis of singly reinforced sections